Sodium Ion Binding to Cationic Surfactants in Micellar Systems – a ²³Na NMR Study

Zhuoran Wang and Joseph A. DiVerdi*

NMR Laboratory for Upper-Division Undergraduate Teaching & Research

Department of Chemistry, Colorado State University, Fort Collins, CO

²³Na NMR spectroscopy

I = 3/2, 100% abundant, Larmor Frequency = 79.4MHz at 7.0T.

For Na⁺_(aal) quadrupole relaxation dominates the spin lattice relaxation

In the extreme narrowing limit:

$$\frac{1}{T_1} = R_1 = \frac{2\pi^2}{5} (\frac{e^2 qQ}{h})^2 \tau_c$$

T₁: spin-lattice relaxation time (s)

R₁: spin-lattice relaxation rate (s⁻¹) eq: eletric field gradient (V m⁻²)

eQ: nuclear quadrupole moment (C m²)

τ_c: correlation time (s)

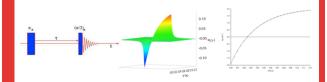
Binding model:

$$[Na^+] + [L^-] \rightleftharpoons [NaL]$$

$$K_{formation} = \frac{[NaL]}{[Na^+][L^-]}$$

$$[Na^+] + [NaL] = [Na^+]_{total}$$

$$X_{free} = \frac{[Na^+]}{[Na^+]_{total}}$$

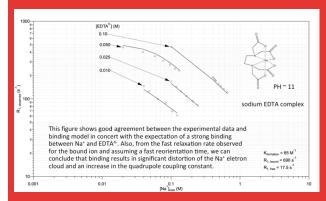

$$= \frac{[NaL]}{[Na+1,...} X_f$$

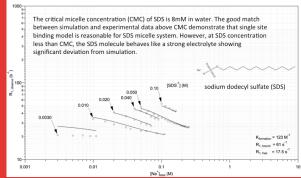
 $X_{free} + X_{bound}$

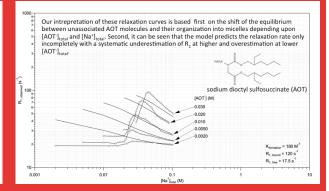
In the fast chemical exchange limit, the observed relaxation rate is given by weighted average:

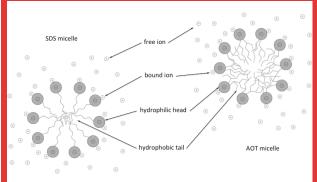
$$R_{1,observe} = R_{1,free}X_{free} + R_{1,bound}X_{bound}$$

T₁ measurement by inversion recovery:

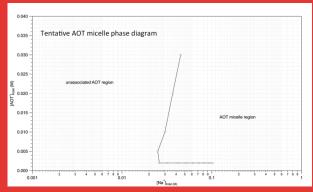



Analysis of the observed signal amplitude as a function of inversion recovery time (τ) yields the relaxation time:


$$M_Z(\tau) = M_Z(\infty)(1 - (1 + \alpha)e^{\frac{-\tau}{T_1}})$$


α: inversion efficiency (≤ 1)

Mz: magnetization along z-axis



Measuring micellar rotational correlation time by ²H NMR:

As R_1 depends on both the effective quadrupolar coupling constant (e^2qQ) and molecular reorientation time (τ_1), an independent measurement of one of these parameters is required. We shall use specifically labeled AOT and 2H quadrupolar NMR spectroscopy to independently measure τ_2 . The quadrupolar relaxation mechanism dominates 2H spectroscopy. When the 2H atom is attached to a carbon atom close to the head group, its motion is expected to be representative of the overall motion of entire micelle.

Labeled AOT molecule:

